首页 医学SCI文献 详情
临床Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas 复制标题

  • 影响指数:4.08
  • 期刊:European Radiology
  • 发表时间:2020-06-27
  • DOI:10.1007/s00330-020-07024-z 复制DOI

研究方向

Objectives To evaluate the differential diagnostic performance of a computed tomography (CT)-based deep learning nomogram (DLN) in identifying tuberculous granuloma (TBG) and lung adenocarcinoma (LAC) presenting as solitary solid pulmonary nodules (SSPNs). Methods Routine CT images of 550 patients with SSPNs were retrospectively obtained from two centers. A convolutional neural network was used to extract deep learning features from all lesions. The training set consisted of data for 218 patients. The least absolute shrinkage and selection operator logistic regression was used to create a deep learning signature (DLS). Clinical factors and CT-based subjective findings were combined in a clinical model. An individualized DLN incorporating DLS, clinical factors, and CT-based subjective findings was constructed to validate the diagnostic ability. The performance of the DLN was assessed by discrimination and calibration using internal ( n  = 140) and external validation cohorts ( n  = 192). Results DLS, gender, age, and lobulated shape were found to be independent predictors and were used to build the DLN. The combination showed better diagnostic accuracy than any single model evaluated using the net reclassification improvement method ( p  < 0.05). The areas under the curve in the training, internal validation, and external validation cohorts were 0.889 (95% confidence interval [CI], 0.839–0.927), 0.879 (95% CI, 0.813–0.928), and 0.809 (95% CI, 0.746–0.862), respectively. Decision curve analysis and stratification analysis showed that the DLN has potential generalization ability. Conclusions The CT-based DLN can preoperatively distinguish between LAC and TBG in patients presenting with SSPNs. Key Points • The deep learning nomogram was developed to preoperatively differentiate TBG from LAC in patients with SSPNs. • The performance of the deep learning feature was superior to that of the radiomics feature. • The deep learning nomogram achieved superior performance compared to the deep learning signature, the radiomics signature, or the clinical model alone.

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录