Currently, mosquito vector control is facing a number of key challenges, including the rapid development of resistance to synthetic pesticides and the recent spread of aggressive arbovirus outbreaks. The biosynthesis of silver nanoparticles (AgNPs) is currently considered an environmental friendly alternative to the employ of pyrethroids, carbamates and microbial agents (e.g. Bacillus thuringiensis var. israelensis), since AgNPs are easy to produce, effective and stable in the aquatic environment. However, their biophysical features showed wide variations according to the botanical agent using for the green synthesis, outlining the importance of screening local floral resources used as reducing and stabilizing agents. In this study, we focused on the biophysical properties and the mosquitocidal action of Quisqualis indica-fabricated AgNPs. AgNPs were characterized using spectroscopic (UV, FTIR, XRD) and microscopic (AFM, SEM, TEM and EDX) techniques. AFM, SEM and TEM confirmed the synthesis of poly-dispersed AgNPs with spherical shape and size ranging from 1 to 30nm. XRD shed light on the crystalline structure of these AgNPs. The acute toxicity of Quisqualis indica extract and AgNPs was evaluated against malaria, arbovirus, and filariasis vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, as well as on three important non-target aquatic organisms. The Q. indica leaf extract showed moderate larvicidal effectiveness on Cx. quinquefasciatus (LC50=220.42), Ae. aegypti (LC50=203.63) and An. stephensi (LC50=185.98). Q. indica-fabricated AgNPs showed high toxicity against Cx. quinquefasciatus (LC50=14.63), Ae. aegypti (LC50=13.55) and An. stephensi (LC50=12.52), respectively. Notably, Q. indica-synthesized AgNPs were moderately toxic to non-target aquatic mosquito predators Anisops bouvieri (LC50=653.05μg/mL), Diplonychus indicus (LC50=860.94μg/mL) and Gambusia affinis (LC50=2183.16μg/mL), if compared to the targeted mosquitoes. Overall, the proposed one-pot biogenic fabrication of AgNPs using Q. indica is a low-cost and eco-friendly tool in the fight against Zika virus, malaria and filariasis vectors, with little impact against non-target aquatic mosquito predators.

译文

目前,蚊媒的控制面临许多关键挑战,包括对合成农药的抗性迅速发展以及近期侵略性虫媒病毒爆发的蔓延。银纳米颗粒(AgNPs)的生物合成目前被认为是替代拟除虫菊酯,氨基甲酸酯和微生物制剂(例如苏云金芽孢杆菌var.israelensis)的一种环境友好替代方法,因为AgNPs在水生环境中易于生产,有效且稳定。然而,根据用于绿色合成的植物剂,它们的生物物理特征显示出很大的差异,突出了筛选用作还原剂和稳定剂的当地花卉资源的重要性。在这项研究中,我们集中于Quisqualis d制造的AgNPs的生物物理特性和灭蚊作用。 AgNPs使用光谱技术(UV,FTIR,XRD)和微观技术(AFM,SEM,TEM和EDX)进行表征。 AFM,SEM和TEM证实了球形和尺寸范围为1至30nm的多分散AgNP的合成。 XRD揭示了这些AgNP的晶体结构。评价了Quisqualis indica提取物和AgNPs对疟疾,虫媒病毒和丝虫病载体,Stephensi按蚊,埃及伊蚊和库克西库克斯犬以及三种重要的非目标水生生物的急性毒性。 in叶提取物对Cx表现出中等杀幼虫效果。 quinquefasciatus(LC50 = 220.42),Ae。埃及(LC50 = 203.63)和An。斯蒂芬斯(LC50 = 185.98)。 Q. Ag制造的AgNP对Cx表现出高毒性。 quinquefasciatus(LC50 = 14.63),Ae。埃及(LC50 = 13.55)和An。斯蒂芬斯(LC50 = 12.52)。值得注意的是,Q合成的AgNPs对非目标水生捕食性蚊食美洲大按蚊(LC50 =653.05μg/ mL),印度洋双翅目(LC50 =860.94μg/ mL)和革兰(Gambusia affinis)(LC50 =2183.16μg/ mL)具有中等毒性。 ,如果与目标蚊子相比。总体而言,拟议的使用印度Q草的一锅式AgNP的生物生产是对抗寨卡病毒,疟疾和丝虫病媒介的一种低成本且生态友好的工具,对非目标水生蚊虫几乎没有影响。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录