Catalysing the reduction of oxygen in acidic media is a standing challenge. Although activity of platinum, the most active metal, can be substantially improved by alloying, alloy stability remains a concern. Here we report that platinum nanoparticles supported on graphite-rich boron carbide show a 50-100% increase in activity in acidic media and improved cycle stability compared to commercial carbon supported platinum nanoparticles. Transmission electron microscopy and x-ray absorption fine structure analysis confirm similar platinum nanoparticle shapes, sizes, lattice parameters, and cluster packing on both supports, while x-ray photoelectron and absorption spectroscopy demonstrate a change in electronic structure. This shows that purely electronic metal-support interactions can significantly improve oxygen reduction activity without inducing shape, alloying or strain effects and without compromising stability. Optimizing the electronic interaction between the catalyst and support is, therefore, a promising approach for advanced electrocatalysts where optimizing the catalytic nanoparticles themselves is constrained by other concerns.

译文

:在酸性介质中催化氧的还原是一项长期挑战。尽管可以通过合金化显着提高最活泼的金属铂的活性,但合金的稳定性仍然值得关注。在这里,我们报告说,与商业碳载铂纳米颗粒相比,负载在富含石墨的碳化硼上的铂纳米颗粒在酸性介质中的活性提高了50-100%,并且循环稳定性得到了改善。透射电子显微镜和X射线吸收精细结构分析证实了两种载体上相似的铂纳米颗粒形状,大小,晶格参数和簇堆积,而X射线光电子和吸收光谱表明电子结构发生了变化。这表明纯电子金属-载体相互作用可以显着改善氧还原活性,而不会引起形状,合金或应变效应,并且不会损害稳定性。因此,优化催化剂和载体之间的电子相互作用是用于高级电催化剂的有前途的方法,其中优化催化纳米颗粒本身受到其他问题的限制。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录