Asthma is a triad of intermittent airway obstruction, bronchial smooth muscle cell hyperreactivity to bronchoconstrictors, and chronic bronchial inflammation. From an aetiological standpoint, asthma is a heterogeneous disease, but often appears as a form of immediate hypersensitivity. Many patients with asthma have other manifestations of atopy, such as rhinitis or eczema. Even among non-atopic patients with asthma, the pathophysiology of airway constriction is similar, raising the hypothesis that alternative mechanisms of mast cell degranulation may underlie the disease. The primary inflammatory lesion of asthma consists of accumulation of CD4(+) T helper type 2 (TH2) lymphocytes and eosinophils in the airway mucosa. TH2 cells orchestrate the asthmatic inflammation through the secretion of a series of cytokines, particularly interleukin 4 (IL-4), IL-13, IL-5, and IL-9. IL-4 is the major factor regulating IgE production by B cells, and is required for optimal TH2 differentiation. However, blocking IL-4 is not sufficient to inhibit the development of asthma in experimental models. In contrast, inhibition of IL-13, another TH2 cytokine whose signal transduction pathway overlaps with that of IL-4, completely blocks airway hyperreactivity in mouse asthma models. IL-5 is a key factor for eosinophilia and could therefore be responsible for some of the tissue damage seen in chronic asthma. IL-9 has pleiotropic activities on allergic mediators such as mast cells, eosinophils, B cells and epithelial cells, and might be a good target for therapeutic interventions. Finally, chemokines, which can be produced by many cell types from inflamed lungs, play a major role in recruiting the mediators of asthmatic inflammation. Genetic studies have demonstrated that multiple genes are involved in asthma. Several genome wide screens point to chromosome 5q31--33 as a major susceptibility locus for asthma and high IgE values. This region includes a cluster of cytokine genes, and genes encoding IL-3, IL-4, IL-5, IL-9, IL-13, granulocyte macrophage colony stimulating factor, and the beta chain of IL-12. Interestingly, for some of these cytokines, a linkage was also established between asthma and their receptor. Another susceptibility locus has been mapped on chromosome 12 in a region that contains other potential candidate cytokine genes, including the gene encoding interferon gamma, the prototypical TH1 cytokine with inhibitory activities for TH2 lymphocytes. Taken together, both experimental and genetic studies point to TH2 cytokines, such as IL-4, IL-13, IL-5, and IL-9, as important targets for therapeutic applications in patients with asthma.

译文

哮喘是间歇性气道阻塞,支气管平滑肌细胞对支气管收缩剂的高反应性和慢性支气管炎症的三联征。从病因学的角度来看,哮喘是一种异质性疾病,但通常以即刻超敏反应的形式出现。许多哮喘患者有特应性的其他表现,如鼻炎或湿疹。即使在非特应性哮喘患者中,气道收缩的病理生理也相似,这提出了肥大细胞脱颗粒的替代机制可能是该疾病的基础的假设。哮喘的主要炎性病变包括气道粘膜中CD4 () T辅助2型 (TH2) 淋巴细胞和嗜酸性粒细胞的积累。TH2细胞通过分泌一系列细胞因子,特别是白介素4 (IL-4),IL-13,IL-5和IL-9来协调哮喘炎症。IL-4是调节b细胞产生IgE的主要因子,是最佳TH2分化所必需的。然而,在实验模型中,阻断IL-4不足以抑制哮喘的发展。相反,抑制IL-13 (另一种TH2细胞因子的信号转导途径与IL-4的信号转导途径重叠) 完全阻断了小鼠哮喘模型中的气道高反应性。IL-5是嗜酸性粒细胞增多的关键因素,因此可能是慢性哮喘中某些组织损伤的原因。IL-9对肥大细胞,嗜酸性粒细胞,b细胞和上皮细胞等过敏介质具有多效性,可能是治疗干预的良好靶标。最后,趋化因子可以由发炎的肺部产生的许多细胞类型产生,在募集哮喘炎症介质中起主要作用。遗传学研究表明,多种基因与哮喘有关。几个基因组宽筛选显示5q31 -- 33号染色体是哮喘和高IgE值的主要易感位点。该区域包括细胞因子基因簇,以及编码IL-3,IL-4,IL-5,IL-9,IL-13,粒细胞巨噬细胞集落刺激因子和IL-12 β 链的基因。有趣的是,对于其中一些细胞因子,哮喘和它们的受体之间也建立了联系。另一个易感性基因座已定位在12号染色体上,该区域包含其他潜在的候选细胞因子基因,包括编码干扰素 γ 的基因,干扰素 γ 是对TH2淋巴细胞具有抑制活性的原型TH1细胞因子。总之,实验和遗传学研究都指出,TH2细胞因子 (例如IL-4,IL-13,IL-5和IL-9) 是哮喘患者治疗应用的重要靶标。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录