Conformations of G-CSF and the extracellular domain of its receptor as well as their complex have been investigated by employing isotope-edited FTIR spectroscopy. To determine unambiguously the protein conformations of G-CSF and the receptor in the complex, we have prepared uniformly 13C/15N isotope labeled G-CSF to resolve its amide I' band from that of the receptor in the IR spectrum of the complex. By comparing the IR spectra of the isotope-labeled G-CSF and the receptor with that of the complex, we have provided spectral evidence that the AB loop region involving the unique 310 helix segment of G-CSF likely undergoes a conformational change to a regular alpha-helix upon binding to the receptor. The IR data also indicate a possible minor increase in alpha-helical conformation for the receptor in the complex. Furthermore, FTIR spectra of G-CSF, the receptor, and their complex demonstrate clearly that protein conformations of both G-CSF and the receptor have been dramatically stabilized by complex formation. Specifically, the melting transition (Tm value) of the alpha-helix in G-CSF is increased by nearly 30 degrees C and that of the beta-strand in the receptor by nearly 15 degrees C in the G-CSF/receptor complex. We estimate from the current FTIR data that the native conformations of approximately 15% of all receptor residues are stabilized by G-CSF binding. On the other hand, the entire alpha-helical content of G-CSF appears to be stabilized in the complex. Together, these results indicate that formation of the ligand/receptor complex results in not only conformational changes in the receptor but also significant structural changes in the ligand. This adds insight to the general consensus that binding of ligand to cytokine receptors induces mostly structural changes in the receptor which lead to receptor oligomerization and signal transduction. The current data also suggest a possible physiological role of the 310 helix present in G-CSF for its receptor binding activity.

译文

通过使用同位素编辑的FTIR光谱法研究了g-csf及其受体的胞外域及其复合物的构象。为了明确确定g-csf和复合物中受体的蛋白质构象,我们制备了均匀的13C/15N同位素标记的g-csf,以从复合物的IR光谱中的受体分离出其酰胺I' 带。通过将同位素标记的g-csf和受体的IR光谱与复合物的IR光谱进行比较,我们提供了光谱证据,表明涉及g-csf独特的310螺旋片段的AB环区域在与受体结合后可能发生构象变化为规则的 α-螺旋。IR数据还表明复合物中受体的 α-螺旋构象可能略有增加。此外,g-csf,受体及其复合物的FTIR光谱清楚地表明,g-csf和受体的蛋白质构象均已通过复合物的形成而显着稳定。具体来说,在g-csf/受体复合物中,g-csf中 α-螺旋的熔化转变 (Tm值) 增加了近30摄氏度,而受体中 β 链的熔化转变 (Tm值) 增加了近15摄氏度。我们根据当前的FTIR数据估计,大约15% 的所有受体残基的天然构象通过g-csf结合而稳定。另一方面,g-csf的整个 α-螺旋含量似乎在复合物中稳定。总之,这些结果表明,配体/受体复合物的形成不仅导致受体的构象变化,而且导致配体的明显结构变化。这为普遍共识增加了见识,即配体与细胞因子受体的结合主要诱导受体的结构变化,从而导致受体寡聚化和信号转导。当前的数据还表明,g-csf中存在的310螺旋可能具有其受体结合活性的生理作用。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录