UNLABELLED:The objective of this study was to develop an automatic image registration technique capable of compensating for kidney motion in renal perfusion MRI, to assess the effect of renal artery stenosis on the kidney parenchyma. MATERIALS AND METHODS:Images from 20 patients scheduled for a renal perfusion study were acquired using a 1.5 T scanner. A free-breathing 3D-FSPGR sequence was used to acquire coronal views encompassing both kidneys following the infusion of Gd-BOPTA. A two-step registration algorithm was developed, including a preliminary registration minimising the quadratic difference and a fine registration maximising the mutual information (MI) between consecutive image frames. The starting point for the MI-based registration procedure was provided by an adaptive predictor that was able to predict kidney motion using a respiratory movement model. The algorithm was validated against manual registration performed by an expert user. RESULTS:The mean distance between the automatically and manually defined contours was 2.95 ± 0.81 mm, which was not significantly different from the interobserver variability of the manual registration procedure (2.86 ± 0.80 mm, P = 0.80). The perfusion indices evaluated on the manually and automatically extracted perfusion curves were not significantly different. CONCLUSIONS:The developed method is able to automatically compensate for kidney motion in perfusion studies, which prevents the need for time-consuming manual image registration.

译文

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录