BACKGROUND:DNA melting curve analysis using double-stranded DNA-specific dyes such as SYTO9 produce complex and reproducible melting profiles, resulting in the detection of multiple melting peaks from a single amplicon and allowing the discrimination of different species. We compare the melting curves of several Naegleria and Cryptosporidium amplicons generated in vitro with in silico DNA melting simulations using the programs POLAND and MELTSIM., then test the utility of these programs for assay design using a genetic marker for toxin production in cyanobacteria. RESULTS:The SYTO9 melting curve profiles of three species of Naegleria and two species of Cryptosporidium were similar to POLAND and MELTSIM melting simulations, excepting some differences in the relative peak heights and the absolute melting temperatures of these peaks. MELTSIM and POLAND were used to screen sequences from a putative toxin gene in two different species of cyanobacteria and identify regions exhibiting diagnostic melting profiles. For one of these diagnostic regions the POLAND and MELTSIM melting simulations were observed to be different, with POLAND more accurately predicting the melting curve generated in vitro. Upon further investigation of this region with MELTSIM, inconsistencies between the melting simulation for forward and reverse complement sequences were observed. The assay was used to accurately type twenty seven cyanobacterial DNA extracts in vitro. CONCLUSION:Whilst neither POLAND nor MELTSIM simulation programs were capable of exactly predicting DNA dissociation in the presence of an intercalating dye, the programs were successfully used as tools to identify regions where melting curve differences could be exploited for diagnostic melting curve assay design. Refinements in the simulation parameters would be required to account for the effect of the intercalating dye and salt concentrations used in real-time PCR. The agreement between the melting curve simulations for different species of Naegleria and Cryptosporidium and the complex melting profiles generated in vitro using SYTO9 verified that the complex melting profile of PCR amplicons was solely the result of DNA dissociation. Other data outputs from these simulations were also used to identify the melting domains that contributed to the observed melting peaks for each of the different PCR amplicons.

译文

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录