A series of ab initio (density functional) calculations were carried out on side chains of a set of amino acids, plus water, from the (intracellular) gating region of the KcsA K(+) channel. Their atomic coordinates, except hydrogen, are known from X-ray structures [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K(+) conduction and selectivity, Science 280 (1998) 69-77; R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, B.T. Chait, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280 (1998) 106-109; Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels. Nature 417 (2001) 523-526], as are the coordinates of some water oxygen atoms. The 1k4c structure is used for the starting coordinates. Quantum mechanical optimization, in spite of the starting configuration, places the atoms in positions much closer to the 1j95, more tightly closed, configuration. This state shows four water molecules forming a "basket" under the Q119 side chains, blocking the channel. When a hydrated K(+) approaches this "basket", the optimized system shows a strong set of hydrogen bonds with the K(+) at defined positions, preventing further approach of the K(+) to the basket. This optimized structure with hydrated K(+) added shows an ice-like 12 molecule nanocrystal of water. If the water molecules exchange, unless they do it as a group, the channel will remain blocked. The "basket" itself appears to be very stable, although it is possible that the K(+) with its hydrating water molecules may be more mobile, capable of withdrawing from the gate. It is also not surprising that water essentially freezes, or forms a kind of glue, in a nanometer space; this agrees with experimental results on a rather different, but similarly sized (nm dimensions) system [K.B. Jinesh, J.W.M. Frenken, Capillary condensation in atomic scale friction: how water acts like a glue, Phys. Rev. Lett. 96 (2006) 166103/1-4]. It also agrees qualitatively with simulations on channels [A. Anishkin, S. Sukharev, Water dynamics and dewetting transitions in the small mechanosensitive channel MscS, Biophys. J. 86 (2004) 2883-2895; O. Beckstein, M.S.P. Sansom, Liquid-vapor oscillations of water in hydrophobic nanopores, Proc. Natl Acad. Sci. U. S. A. 100 (2003) 7063-7068] and on featureless channel-like systems [J. Lu, M.E. Green, Simulation of water in a pore with charges: application to a gating mechanism for ion channels, Prog. Colloid Polym. Sci. 103 (1997) 121-129], in that it forms a boundary on water that is not obvious from the liquid state. The idea that a structure is stable, even if individual molecules exchange, is well known, for example from the hydration shell of ions. We show that when charges are added in the form of protons to the domains (one proton per domain), the optimized structure is open. No stable water hydrogen bonds hold it together; an opening of 11.0 A appears, measured diagonally between non-neighboring domains as glutamine 119 carbonyl O-O distance. This is comparable to the opening in the MthK potassium channel structure that is generally agreed to be open. The appearance of the opening is in rather good agreement with that found by Perozo and coworkers. In contrast, in the uncharged structure this diagonal distance is 6.5 A, and the water "basket" constricts the uncharged opening still further, with the ice-like structure that couples the K(+) ion to the gating region freezing the entrance to the channel. Comparison with our earlier model for voltage gated channels suggests that a similar mechanism may apply in those channels.

译文

:从KcsA K()通道的(细胞内)门控区域对一组氨基酸加上水的侧链进行了一系列从头算(密度函数)计算。从氢射线结构可以知道它们的原子坐标(氢除外)[D.A。 Doyle,J.M. Cabral,R.A. Pfuetzner,A.Kou,J.M. Gulbis,S.L.英国科恩(Cohen) Chait,R.MacKinnon,钾通道的结构:K()传导和选择性的分子基础,Science 280(1998)69-77。麦金农(S.L.) Cohen,A.Kou,A.Lee,B.T. Chait,原核和真核钾通道中的结构保守性,Science 280(1998)106-109。江,李安,陈洁,M.Cadene,B.T。 Chait,R. MacKinnon,钾通道的开孔构象。 Nature 417(2001)523-526],以及一些水氧原子的坐标。 1k4c结构用于起始坐标。尽管采用了初始配置,但量子力学优化仍将原子放置在更接近1j95(更紧密闭合)的位置。此状态显示四个水分子在Q119侧链下方形成“篮子”,从而阻塞了通道。当水合的K()接近此“篮子”时,优化的系统会在K()的指定位置显示一组牢固的氢键,从而防止K()进一步接近篮子。添加水合K()的这种优化结构显示出水的冰状12分子纳米晶体。如果水分子交换,除非它们作为一个整体进行交换,否则通道将保持阻塞状态。 “篮子”本身似乎非常稳定,尽管带有水化水分子的K()可能更易移动,能够从闸门中撤出。同样,毫不奇怪的是,水在纳米空间中基本上会冻结或形成一种胶。这与在一个完全不同但大小相似(纳米尺寸)的系统上的实验结果相吻合[K.B. Jinesh,J.W.M. Frenken,毛细管缩合在原子尺度上的摩擦:水如何像胶一样起作用,物理学。莱特牧师96(2006)166103 / 1-4]。它在质量上也与通道模拟[A. Anishkin,S。Sukharev,小型机械敏感通道MscS中的水动力学和去湿转换,Biophys。 J.86(2004)2883-2895; O.贝克斯坦(M.S.P.) Sansom,疏水纳米孔中水的液-汽振荡,Proc.Natl.Acad.Sci.USA,88:1593-2404。纳特·阿卡德(Natl Acad)。科学U. S. A. 100(2003)7063-7068]和无特征的类通道系统[J. Lu,M.E. Green,带电荷的孔中水的模拟:应用于离子通道的门控机制,Prog。胶体Polym。科学103(1997)121-129],因为它在水上形成了边界,从液体状态看,边界并不明显。即使单个分子交换,结构也是稳定的想法是众所周知的,例如从离子的水合壳中。我们显示出,当电荷以质子的形式添加到域中(每个域一个质子)时,优化的结构是开放的。没有稳定的水氢键将其结合在一起。出现11.0 A的开口,对角线在非相邻域之间以谷氨酰胺119羰基O-O距离进行测量。这相当于通常被认为是开放的MthK钾通道结构中的开放。开口的外观与Perozo及其同事发现的外观非常吻合。相反,在不带电的结构中,对角线距离为6.5 A,水“篮”进一步限制了不带电的开口,而冰状结构将K()离子耦合到门控区域,从而冻结了通道​​的入口。 。与我们先前的电压门控通道模型进行比较表明,类似的机制可能适用于这些通道。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录