BACKGROUND:Hypoxia-induced rise in intracellular calcium concentration is a causative agent of apoptosis and oxidative damage in cardiomyocytes. We examined the efficacy of calcium channel blocker amlodipine in preventing hypoxia-induced apoptosis in H9c2 cells and restoring oxidative balance. METHODS:H9c2 cells were exposed to hypoxia (0.5% oxygen) to evaluate the efficacy of amlodipine in restoring cellular calcium levels. Cellular markers of apoptosis (Bax/Bcl2 and caspase-3, -7, and -9) and pro-survival markers (Akt/p-Akt levels) were evaluated under hypoxia. Redox damage was evaluated by assessing markers of oxidative damage, that is, glutathione reduced, glutathione oxidized, lipid peroxidation, reactive oxygen species, and manganese superoxide dismutase activity. Cellular adenosine triphosphate (ATP) pool and AMPKα levels were measured to evaluate regulation of metabolism under hypoxia. RESULTS:Amlodipine treatment at 25 nM prevented apoptosis and restored cellular calcium levels and oxidative damage in cardiomyocytes. Stabilization of caspase-3, -7, and -9 along with restoration of Akt/p-Akt levels depicted pro-survival efficacy of amlodipine. Also, restoration of cellular ATP and AMPKα levels indicates that amlodipine prevents cardiomyocytes from hypoxia-induced metabolic stress. CONCLUSIONS:Amlodipine thus protects H9c2 cells from hypoxia-induced apoptosis by regulating Akt/p-Akt-mediated caspase-3, -7, and -9 activation and restoring cellular ATP and redox status.

译文

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录