Cyanobacteria are one of the principal sources of volatile organic compounds (VOCs) which cause offensive taste and odor (T&O) in drinking and recreational water, fish, shellfish and other seafood. Although non-toxic to humans, these T&O compounds severely undermine public trust in these commodities, resulting in substantial costs in treatment, and lost revenue to drinking water, aquaculture, food and beverage and tourist/hospitality industries. Mitigation and control have been hindered by the complexity of the communities and processes which produce and modify T&O events, making it difficult to source-track the major producer(s) and the factors governing VOC production and fate. Over the past decade, however, advances in bioinformatics, enzymology, and applied detection technologies have greatly enhanced our understanding of the pathways, the enzymes and the genetic coding for some of the most problematic VOCs produced by cyanobacteria. This has led to the development of tools for rapid and sensitive detection and monitoring for the VOC production at source, and provided the basis for further diagnostics of endogenous and exogenous controls. This review provides an overview of current knowledge of the major cyanobacterial VOCs, the producers, the biochemistry and the genetics and highlight the current applications and further research needs in this area.