The objective of this study was to explore a paradigm that would allow a temporary deprivation of whisker information lasting for a few hours. An additional requirement was to be non-invasive in order to be usable in awake chronically implanted rats without inducing stress. With that aim, electrophysiological recordings from the barrel cortex of anesthetized rats were obtained. The pressure of an air-puff (5-10 ms) delivered to the whiskers was adjusted to evoke a consistent response of around 100 microV (extracellular) or approximately 5 mV (intracellular) in the contralateral cortex. Lidocaine was then locally applied in different forms (cream, local injection, aerosol, drops) and concentrations (2-10%) to the base of the whiskers. The stimulus-induced response was monitored once every 5s for several hours (3-6h) in order to characterize its course of action. Local injection of lidocaine induced the fastest and most complete blockage, but was ruled out for being invasive. Out of the remaining forms of application, a lidocaine drop (0.4 ml, 10%) to the base of the whiskers was found to induce a reliable blockage (to an average 9% the original response). The maximum effect was reached after 150-200 min, and the response was totally recovered approximately 300 min after lidocaine application. This characterization should be useful to induce an efficient, short term and reversible blockage of whisker sensory transmission in both anesthetized and awake preparations, while not causing stress in an awake animal.