Chemoresistance and side effects are considered as the major obstacles in cisplatin-based chemotherapy of various human malignant tumors. Conjugation with cancer-specific apoptotic stimuli TRAIL or typical viro-agent ONYX-015 has been extensively investigated to enhance the antitumor activity of cisplatin. In this study, we presented a novel chemo-gene-virotherapeutic strategy to further improve the toxic effects in cancer cells and reduce the damage in normal cells. Here, an oncolytic adenoviral vector (ZD55), with a deletion of E1B 55-kDa gene, was employed to express the therapeutic TRAIL gene by constructing a recombinant virus ZD55-TRAIL. Exogenous gene delivery efficacy was determined by both in vitro and in vivo experiments and enhanced cytotoxicity of combined treatment of ZD55-TRAIL with cisplatin was evaluated in several cancer cell lines. Moreover, negative effects on normal cells have been tested in both L-02 and MRC-5 cell lines by MTT assay and apoptotic cell staining. According to our observation, combination of ZD55-TRAIL with cisplatin exhibited an apparent synergistic cytotoxicity in cancer cells, yet significantly abolished the negative toxicity in normal cells by reducing the dosage. Thus, a novel chemo-gene-virotherapeutic strategy for cancer therapy was proposed.