Five estrogenic hormones (unconjugated + conjugated fractions) and 10 beta blockers were analyzed in three wastewater treatment plant (WWTP) effluents and receiving river waters in the area of Lyon, France. In the different samples, only two estrogens were quantified: estrone and estriol. Some beta blockers, such as atenolol, acebutolol, and sotalol, were almost always quantified, but others, e.g., betaxolol, nadolol, and oxprenolol were rarely quantified. Concentrations measured in river waters were in the nanogram per liter range for estrogens and between 0.3 and 210 ng/L for beta blockers depending on the substance and the distance from the WWTP outfall. The impact of the WWTP on the receiving rivers was studied and showed a clear increase in concentrations near the WWTP outfall. For estrogens, the persistence in surface waters was not evaluated given the low concentrations levels (around 1 ng/L). For beta blockers, concentrations measured downstream of the WWTP outfall were up to 16 times higher than those measured upstream. Also, the persistence of metoprolol, nadolol, and propranolol was noted even 2 km downstream of the WWTP outfall. The comparison of beta blocker fingerprints in the samples collected in effluent and in the river also showed the impact of WWTP outfall on surface waters. Finally, a tentative environmental risk evaluation was performed on 15 sites by calculating the ratio of receiving water concentrations to predicted non-effect concentrations (PNEC). For estrogens, a total PNEC of 5 ng/L was considered and these substances were not linked to any potential environmental risk (only one site showed an environmental risk ratio above 1). Unfortunately, few PNECs are available and risk evaluation was only possible for 4 of the 10 beta blockers studied: acebutolol, atenolol, metoprolol, and propranolol. Only propranolol presented a ratio near or above 1, showing a possible environmental risk for 4 receiving waters out of 15.