Vascular diseases leading to thrombo-occlusion are the leading cause of morbidity and mortality worldwide. Revascularization and restoration of antegrade blood flow is critical for tissue survival and patient health. In this aspect, systemic administration of thrombolytics (e.g., streptokinase) to dissolve occlusive thrombi is a clinically established strategy. However, this strategy typically necessitates the administration of large doses, leading to a high incidence of hemorrhagic complications due to systemic side effects. To minimize this risk, liposomes specifically targeted to the site of thrombo-occlusion have been bioengineered by exploiting ligand-receptor relationships pertinent to thrombus-associated cell phenotypes. This study focuses on encapsulating streptokinase within these liposomes, specifically regarding the effect of liposome processing conditions on streptokinase encapsulation and activity. Theoretical calculations of encapsulation capacity agreed well with that reported in the literature. The experimental encapsulation efficiency values are 45.9 ± 34.0% (n = 9 ± SD) and 21.6 ± 30.0% (n = 6 ± SD), using two different methods. The liposome processing conditions are found to decrease streptokinase activity; however, over 30% remain active after processing, maintaining enough activity to be therapeutic especially when protected inside a vehicle targeted to the site of thrombo-occlusion. The insight gained from the research reported here would enable refining the design and the processing conditions of liposomal formulations of fibrinolytics to yield reduced variability in encapsulation efficiency and streptokinase activity. The design of a thrombus-targeted 'stealth' liposome reported earlier and the current findings of fibrinolytics' encapsulation and activity in such liposomes can be efficiently integrated to develop an efficient strategy for vascular nanomedicine.

译文

:导致血栓闭塞的血管疾病是全球发病率和死亡率的主要原因。血运重建和顺行血流的恢复对于组织存活和患者健康至关重要。在这方面,溶栓剂(例如,链激酶)的全身给药以溶解闭塞性血栓是临床上确立的策略。但是,该策略通常需要大剂量给药,由于全身性副作用,导致出血并发症的发生率很高。为了使这种风险最小化,已经通过利用与血栓相关的细胞表型有关的配体-受体关系,生物工程化了专门针对血栓闭塞部位的脂质体。这项研究的重点是将链激酶包封在这些脂质体内,特别是关于脂质体加工条件对链激酶包封和活性的影响。封装能力的理论计算与文献报道的结果非常吻合。使用两种不同的方法,实验的包封效率值为45.9±34.0%(n = 9±SD)和21.6±30.0%(n = 6±SD)。发现脂质体加工条件降低了链激酶的活性。但是,加工后仍有超过30%的活性保持,保持足够的活性以进行治疗,尤其是在针对血栓闭塞部位的媒介物内部进行保护时。从这里报道的研究中获得的见识将有助于完善纤维蛋白溶解剂脂质体制剂的设计和加工条件,从而降低包封效率和链激酶活性的可变性。血栓靶向的“隐身”脂质体的设计已在较早前报道,纤维蛋白溶解剂在此类脂质体中的包封和活性的最新发现可有效整合,以开发出有效的血管纳米药物策略。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录