High-throughput X-ray diffraction (XRD) is one of the most indispensable techniques to accelerate materials research. However, the conventional XRD analysis with a large beam spot size may not best appropriate in a case for characterizing organic materials thin film libraries, in which various films prepared under different process conditions are integrated on a single substrate. Here, we demonstrate that high-resolution grazing incident XRD mapping analysis is useful for this purpose: A 2-dimensional organic combinatorial thin film library with the composition and growth temperature varied along the two orthogonal axes was successfully analyzed by using synchrotron microbeam X-ray. Moreover, we show that the time-consuming mapping process is accelerated with the aid of a machine learning technique termed as Bayesian optimization based on Gaussian process regression.

译文

高通量X射线衍射(XRD)是加速材料研究的必不可少的技术之一。然而,在表征有机材料薄膜库的情况下,具有大束斑尺寸的常规XRD分析可能不是最合适的,在这种情况下,将在不同工艺条件下制备的各种薄膜集成在单个基板上。在这里,我们证明了高分辨率掠入射XRD映射分析可用于此目的:通过使用同步加速器X射线X射线成功分析了成分和生长温度沿两个正交轴变化的二维有机组合薄膜库。 。此外,我们表明,借助基于高斯过程回归的贝叶斯优化(Bayesian Optimization)的机器学习技术,加速了耗时的映射过程。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录