In the framework of the electrocardiography (ECG) signals, this paper describes an original approach to identify heartbeat morphologies and to detect R-wave events. The proposed approach is based on a "geometrical matching" rule evaluated using a decision function in a local moving-window procedure. The decision function is a normalized measurement of a similarity criterion comparing the windowed input signal with the reference beat-pattern into a nonlinear-curve space. A polynomial expansion model describes the reference pattern. For the curve space, an algebraic-fitting distance is built according to the canonical equation of the unit circle. The geometrical matching approach operates in two stages, i.e., training and detection ones. In the first stage, a learning-method based on genetic algorithms allows us estimating the decision function from training beat-pattern. In the second stage, a level-detection algorithm evaluates the decision function to establish the threshold of similarity between the reference pattern and the input signal. Finally, the findings for the MIT-BIH Arrhythmia Database present about 98% of sensitivity and 99% of positive predictivity for the R-waves detection, using low-order polynomial models.

译文

在心电图(ECG)信号的框架中,本文介绍了一种识别心跳形态和检测R波事件的原始方法。所提出的方法基于在本地移动窗口过程中使用决策函数评估的“几何匹配”规则。决策函数是相似性标准的归一化测量,它将加窗的输入信号与参考拍子模式比较成非线性曲线空间。多项式展开模型描述了参考模式。对于曲线空间,根据单位圆的正则方程建立代数拟合距离。几何匹配方法分为两个阶段,即训练和检测两个阶段。在第一阶段,基于遗传算法的学习方法使我们能够从训练节拍模式中估计决策函数。在第二阶段,电平检测算法评估决策函数,以建立参考模式与输入信号之间相似度的阈值。最后,使用低阶多项式模型,MIT-BIH心律失常数据库的发现显示R波检测的灵敏度约为98%,阳性预测值为99%。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录