The standard strategy for analysis by tandem mass spectrometry of protein phosphorylation at serine or threonine utilizes the neutral loss of H3PO4 (= 97.977/z) from proteolytic peptide molecular ions as marker fragmentation. Manual control of automatically performed neutral loss-based phosphopeptide identifications is strongly recommended, since these data may contain false-positive results. These are connected to the experimental neutral loss m/z error, to competing peptide fragmentation pathways, to limitations in data interpretation software, and to the general growth of protein sequence databases. The fragmentation-related limitations of the neutral loss approach cover (i) the occurrence of abundant 'close-to-98/z' neutral loss fragmentations, (ii) the erroneous assignment of a neutral loss other than loss of H3PO4 due to charge state mix-up, and (iii) the accidental occurrence of any fragment ion in the m/z windows of interest in combination with a charge-state mix-up. The 'close-to-98/z' losses comprise loss of proline (97.053/z), valine (99.068/z), threonine (101.048/z), or cysteine (103.009/z) preferably from peptides with N-terminal sequences PP, VP, TP, or CP, and loss of 105.025/z from alkylated methionine. Confusion with other neutral losses may occur, when their m/z window coincides with a 98/z window as result of a charge state mix-up. Neutral loss of sulfenic acid from oxidized methionine originating from a doubly charged precursor (63.998/2 = 31.999) may thus mimic the loss of phosphoric acid from a triply charged phosphopeptide (97.977/3 = 32.659). As a consequence of the large complexity of proteomes, peptide sequence ions may occur in one of the mass windows of H3PO4 loss around 97.977/z. Practical examples for false-positive annotations of phosphopeptides are given for the first two groups of error. The majority of these can be readily recognized using the guidelines presented in this study.

译文

通过串联质谱分析丝氨酸或苏氨酸蛋白磷酸化的标准策略利用蛋白水解肽分子离子中H3PO4 (= 97.977/z) 的中性损失作为标记片段。强烈建议手动控制自动执行的基于中性损失的磷酸肽鉴定,因为这些数据可能包含假阳性结果。这些与实验中性损失m/z误差,竞争性肽片段化途径,数据解释软件的局限性以及蛋白质序列数据库的总体增长有关。中性损失方法与碎片相关的限制涵盖 (i) 大量 “接近98/z” 中性损失碎片的发生,(ii) 由于电荷状态混淆而导致的除了H3PO4损失之外的中性损失的错误分配,(iii) 在感兴趣的m/z窗口中意外发生任何碎片离子,并结合电荷状态混合。“接近-98/z” 损失包括脯氨酸 (97.053/z) 、缬氨酸 (99.068/z) 、苏氨酸 (101.048/z) 或半胱氨酸 (103.009/z) 的损失,优选地来自具有N端序列PP、VP、TP或CP的肽,以及烷基化甲硫氨酸的105.025/z的损失。当电荷状态混合导致其m/z窗口与98/z窗口重合时,可能会发生与其他中性损耗的混淆。源自双重电荷前体 (63.998/2 = 31.999) 的氧化蛋氨酸的亚砜酸的中性损失因此可以模拟来自三重电荷磷酸肽 (97.977/3 = 32.659) 的磷酸的损失。由于蛋白质组的大量复杂性,肽序列离子可能出现在H3PO4丢失的质量窗口之一中,约97.977/z。针对前两组错误,给出了磷酸肽假阳性注释的实际示例。使用本研究中提出的指南可以很容易地识别出其中的大多数。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录