Colorectal carcinoma (CRC) is the second leading cause of cancer-related death in the United States in the general population (men and women combined). Epidemiologic data obtained over the last several decades shows convincing evidence for the efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) in the reduction of risk of CRC through the inhibition of cycloxygenase (COX). Recent research has also demonstrated that prostaglandin E2 (PGE2), a predominant product of COX, plays a critical role in tumorigenesis of CRCs through its guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs), EP2, and EP4. Molecular analysis of CRC and its precursor lesions have shown that mutation of Adenomatous Polyposis Coli (APC), a gene involved in the wingless type signaling pathway, is an early event during the neoplastic progression in the majority of sporadic CRCs. The fundamental questions are: why is wild type APC so important in adult colorectal tissues in preventing this tumorigenesis, and what are the mechanisms by which NSAIDs prevent colorectal tumorigenesis? We reviewed the recent literature concerning the PGE2-GPCR signaling pathway and the APC-beta-catenin (wingless type) pathway in CRC cells and propose a unifying schema regarding the tumorigenesis of CRC. Colorectal epithelia are continuously exposed to various extracellular agonists (including low levels of PGE2). The binding of these agonists to their corresponding GPCRs leads to formation of activated Galphas, which in turn activates beta-catenin. In normal colorectal epithelia, wild type APC blocks the Galphas-induced activation of beta-catenin, and therefore maintains homeostasis and prevents tumorigenesis. In contrast, in the absence of functional APC, continuous formation of activated Galphas by the binding of various extracellular agonists to their receptors leads to the activation and nuclear accumulation of beta-catenin. This elevated nuclear beta-catenin in turn increases transcription of many genes (COX-2, C-myc, Cyclin D1, vascular endothelial growth factor, T cell factor, etc.) involved in tumorigenesis. Increased transcription of COX-2 also leads to excessive production of PGE2 that in turn forms a stimulatory loop with many biologic functions (proliferation, migration, invasion, angiogenesis, and inhibition of apoptosis), which may result in the development of CRC. Because NSAIDs inhibit COX and decrease the production of PGE2, interruption of the cycle helps prevent colorectal tumorigenesis.

译文

大肠癌 (CRC) 是美国普通人群 (男性和女性合计) 中癌症相关死亡的第二大原因。在过去几十年中获得的流行病学数据显示了令人信服的证据,证明非甾体类抗炎药 (NSAIDs) 通过抑制环氧化酶 (COX) 降低CRC风险。最近的研究还表明,COX的主要产物前列腺素E2 (PGE2) 通过其鸟嘌呤核苷酸结合蛋白 (g蛋白) 偶联受体 (GPCRs),EP2和ep4在crc的肿瘤发生中起关键作用。CRC及其前体病变的分子分析表明,腺瘤性息肉病 (APC) 的突变是参与无翅型信号通路的基因,是大多数散发性CRC肿瘤进展过程中的早期事件。基本问题是: 为什么野生型APC在成人结直肠组织中预防这种肿瘤发生如此重要,NSAIDs预防结直肠肿瘤发生的机制是什么?我们回顾了有关CRC细胞中PGE2-GPCR信号通路和APC-β-catenin (无翼型) 通路的最新文献,并提出了有关CRC肿瘤发生的统一方案。结直肠上皮细胞持续暴露于各种细胞外激动剂 (包括低水平的PGE2)。这些激动剂与其相应的gpcr的结合导致形成活化的galpha,进而激活 β-catenin。在正常的结直肠上皮中,野生型APC可阻断galpha诱导的 β-catenin激活,从而维持体内平衡并防止肿瘤发生。相反,在没有功能性APC的情况下,通过各种细胞外激动剂与其受体的结合连续形成活化的galpha导致 β-catenin的活化和核积累。这种升高的核 β-连环蛋白反过来增加了参与肿瘤发生的许多基因 (COX-2,C-myc,Cyclin D1,血管内皮生长因子,T细胞因子等) 的转录。COX-2的转录增加也导致PGE2的过量产生,进而形成具有许多生物学功能 (增殖,迁移,侵袭,血管生成和凋亡抑制) 的刺激环,这可能导致CRC的发展。由于NSAIDs抑制COX并减少PGE2的产生,因此中断周期有助于预防结直肠肿瘤的发生。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录