PURPOSE:Previously we showed that mild thermal stress increased natural killer (NK) cell-mediated tumour cytotoxicity and that this could be blocked by anti-NKG2D or anti-MICA (major histolocompatability complex (MHC) class I related chain A) antibodies. Here, we investigated the role of the transcription factor heat shock factor 1 (HSF1) in thermal regulation of MICA expression in tumour cells in vitro and in vivo. MATERIALS AND METHODS:Hyperthermia experiments were conducted in vitro and in mice using a target temperature of 39.5 °C. Apoptotic cells and NK cells in situ were visualised by use of the TUNEL assay or expression of NKp46 respectively. Using Colo205 cells, HSF1 message was blocked utilising siRNA while luciferase reporter assays were used to measure the activity of the MICA promoter in vitro. Cell surface MICA was measured by flow cytometry. RESULTS:Following whole body hyperthermia (WBH), tumour tissues showed an increase in NK cells and apoptosis. Mild thermal stress resulted in a transient increase in surface MICA and enhanced NK cytotoxicity of the Colo205 colon cancer cell line. Silencing (mRNA) HSF1 expression in Colo205 cells prevented the thermal enhancement of MICA message and surface protein levels, with partial loss of thermally enhanced NK cytotoxicity. Mutations of the HSF1 binding site on the MICA promoter implicated HSF1 in the thermal enhancement of MICA. Some, but not all, patient-derived colon tumour derived xenografts also exhibited an enhanced MICA message expression after WBH. CONCLUSIONS:Up-regulation of MICA expression in Colo205 cells and enhanced sensitivity to NK cell killing following mild thermal stress is dependent upon HSF1.

译文

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录