The lack of highly efficient, inexpensive catalysts severely hinders large-scale application of electrochemical hydrogen evolution reaction (HER) for producing hydrogen. MoS2 as a low-cost candidate suffers from low catalytic performance. Herein, taking advantage of its tri-layer structure, we report a MoS2 nanofoam catalyst co-confining selenium in surface and cobalt in inner layer, exhibiting an ultra-high large-current-density HER activity surpassing all previously reported heteroatom-doped MoS2. At a large current density of 1000 mA cm-2, a much lower overpotential of 382 mV than that of 671 mV over commercial Pt/C catalyst is achieved and stably maintained for 360 hours without decay. First-principles calculations demonstrate that inner layer-confined cobalt atoms stimulate neighbouring sulfur atoms while surface-confined selenium atoms stabilize the structure, which cooperatively enable the massive generation of both in-plane and edge active sites with optimized hydrogen adsorption activity. This strategy provides a viable route for developing MoS2-based catalysts for industrial HER applications.

译文

缺乏高效,廉价的催化剂严重阻碍了电化学析氢反应 (HER) 用于制氢的大规模应用。MoS2作为一种低成本候选产品,催化性能低下。在此,利用其三层结构,我们报告了一种MoS2纳米foam催化剂,将硒共约束在表面和钴在内层,表现出超高的大电流密度HER活性,超过了所有先前报道的杂原子掺杂MoS2。在1000  ma   cm-2的大电流密度下,在商用Pt/C催化剂上实现了比671  mV低得多的382  mV的过电位,并稳定地保持360小时而没有衰减。第一性原理计算表明,内层约束的钴原子会刺激相邻的硫原子,而表面约束的硒原子会稳定结构,从而可以协同产生大量的面内和边缘活性位点,并具有优化的氢吸附活性。该策略为开发用于工业HER应用的MoS2-based催化剂提供了可行的途径。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录