OBJECTIVE:The role of the brain as a target for angiotensin converting enzyme (ACE) inhibitors in the treatment of heart failure and hypertension is unclear. To test the hypothesis that ACE inhibitors may modulate other central neuropeptide systems such as the central vasopressin system, we studied the effects of chronic treatment with the ACE inhibitor, quinapril, on ACE activity and on central vasopressin content in specific brain areas in rats. METHODS:22 rats were chronically treated with quinapril (6 mg.kg-1 BW per gavage daily for 6 weeks; untreated controls, n = 14). ACE density in various brain regions was assessed by in vitro autoradiography using the specific ACE inhibitor, 125I-351A. Vasopressin content was determined in 19 brain areas (micropunch technique) known to be involved in cardiovascular regulation. RESULTS:Following chronic quinapril treatment ACE was significantly decreased in the thalamus (-38%), hypothalamus (-37%), hypophysis (-35%), cerebellum (-36%) choroid plexus (-20%), and locus coeruleus (-35%). Additionally, a marked reduction in serum ACE activity (-97%) was observed. Plasma levels of vasopressin were significantly decreased after quinapril treatment (0.97[s.e.m. 0.11] vs. 1.63[0.24] pg.ml-1 in controls, P < 0.05). Vasopressin content was significantly reduced in 9 of 19 specific brain areas. Regarding the hypothalamic vasopressin-producing nuclei, vasopressin was decreased in the paraventricular (292[197] vs. 2379[585] pg.mg-1 crotein in controls; P < 0.001) and supraoptic nuclei (13618[1979] vs. 24525[3894] pg.mg-1 protein; P < 0.05), but not in the suprachiasmatic nucleus. Vasopressin content was significantly reduced in brain areas connected by vasopressinergic fibres originating in the hypothalamic paraventricular nucleus: namely central gray, subcommissural organ, organum vasculosum laminae terminalis, dorsal raphe nucleus, and locus coerules. Vasopressin content was also significantly reduced in the median eminence (5887[1834] vs. 28321[4969] pg.mg-1 protein, P < 0.001), where the hormone is mainly concentrated in the hypothalamo-hypophysial tract. CONCLUSIONS:Autoradiographic studies in vitro indicate that orally administered quinapril suppresses central ACE activity after chronic treatment. ACE inhibition by quinapril strongly influences vasopressin content in important brain areas which are involved in central cardiovascular regulation. Therefore, central modulatory effects of ACE inhibitors may also contribute to overall therapeutic efficacy.

译文

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录