Once the periodic properties of elements were unveiled, chemical behaviour could be understood in terms of the valence of atoms. Ideally, this rationale would extend to quantum dots, and quantum computation could be performed by merely controlling the outer-shell electrons of dot-based qubits. Imperfections in semiconductor materials disrupt this analogy, so real devices seldom display a systematic many-electron arrangement. We demonstrate here an electrostatically confined quantum dot that reveals a well defined shell structure. We observe four shells (31 electrons) with multiplicities given by spin and valley degrees of freedom. Various fillings containing a single valence electron-namely 1, 5, 13 and 25 electrons-are found to be potential qubits. An integrated micromagnet allows us to perform electrically-driven spin resonance (EDSR), leading to faster Rabi rotations and higher fidelity single qubit gates at higher shell states. We investigate the impact of orbital excitations on single qubits as a function of the dot deformation and exploit it for faster qubit control.

译文

:一旦揭示了元素的周期性,就可以根据原子的化合价来理解化学行为。理想情况下,此原理可以扩展到量子点,并且仅通过控制基于点的量子位的外壳电子即可执行量子​​计算。半导体材料的不完善破坏了这种类比,因此实际的设备很少显示出系统的多电子排列。我们在这里演示了一个静电受限的量子点,该量子点揭示了定义明确的壳结构。我们观察到四个具有自旋和谷自由度的多重性的壳(31个电子)。发现包含单个价电子(即1、5、13和25个电子)的各种填充物是潜在的量子位。集成的微磁体使我们能够执行电动自旋共振(EDSR),从而在较高的壳态下实现更快的Rabi旋转和更高保真度的单量子位门。我们研究了轨道激发对单个量子位的影响,该影响是点变形的函数,并将其用于更快的量子位控制。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录