Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces.IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells.

译文

硫还原菌 (Geobacter sulphyredudens),一种厌氧金属还原菌,具有IV型菌毛。这些菌毛是生物膜形成中的固有结构元素,并且与许多c型细胞色素一起被认为是导电纳米线,能够将电子远距离转移 (ET) 到金属氧化物和石墨阳极。在这里,我们报告了PilA蛋白 (IV型菌毛的结构亚基) 中非保守的氨基酸残基的翻译后修饰对于在不溶性细胞外电子受体上的生长至关重要。分泌的PilA蛋白的基质辅助激光解吸电离 (MALDI) 质谱显示,酪氨酸32的翻译后修饰具有与甘油磷酸基团一致的部分。将这种酪氨酸突变为苯丙氨酸会抑制以Fe(III) 氧化物为唯一电子受体的细胞生长。此外,这种氨基酸替代严重减少了石墨表面上的生物膜形成,并损害了微生物燃料电池中的电流输出。这些结果表明,附着在不溶性电子受体上的能力对于细胞利用它们的能力起着至关重要的作用。这项工作表明,Y32的甘油磷酸修饰是导致IV型菌毛表面电荷的关键因素,影响了Geobacter与特定表面的粘附。重要性IV型菌毛是细菌附属物,在细胞粘附,毒力,抽动运动,以及从细菌细胞到不溶性细胞外电子受体的远距离电子转移 (ET)。对于ET的IV型菌毛在硫化杆菌中的作用和作用仍然是研究的主题。在这项研究中,我们确定了主要的G.Sulphenredenions IV型pilin的翻译后修饰,建议是甘油磷酸部分。我们表明,与野生型相比,甘油磷酸修饰的酪氨酸32被苯丙氨酸取代的突变体的ET和生物膜形成能力降低。结果表明,甘油磷酸修饰的酪氨酸对于电极或Fe(III) 呼吸的G.Sulphences还原细胞的表面附着和电子转移的重要性。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录