New organic semiconductors are essential for developing inexpensive, high-efficiency, solution-processable polymer solar cells (PSCs). PSC photoactive layers are typically fabricated by film-casting a donor polymer and a fullerene acceptor blend, with ensuing solvent evaporation and phase separation creating discrete conduits for photogenerated holes and electrons. Until recently, n-type fullerene acceptors dominated the PSC literature; however, indacenodithienothiophene (IDTT)-based acceptors have recently enabled remarkable PSC performance metrics, for reasons that are not entirely obvious. We report two isomeric IDTT-based acceptors 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-benz-(5, 6)indanone))-5,5,11,11-tetrakis(4-nonylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']di-thiophene (ITN-C9) and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-benz(6,7)indanone))-5,5,11,11-tetrakis(4-nonylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITzN-C9) that shed light on the exceptional IDTT properties vis-à-vis fullerenes. The neat acceptors and blends with fluoropolymer donor poly{[4,8-bis[5-(2- ethylhexyl)-4-fluoro-2-thienyl]benzo[1,2-b:4,5-b']dithiophene2,6-diyl]-alt-[2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo4H,8H-benzo[1,2-c:4,5-c']dithiophene-1,3-diyl]]} (PBDB-TF) are investigated by optical spectroscopy, cyclic voltammetry, thermogravimetric analysis, differential scanning calorimetry, single-crystal X-ray diffraction, photovoltaic response, space-charge-limited current transport, atomic force microscopy, grazing incidence wide-angle X-ray scattering, and density functional theory-level quantum chemical analysis. The data reveal that ITN-C9 and ITzN-C9 organize such that the lowest unoccupied molecular orbital-rich end groups have intermolecular π-π distances as close as 3.31(1) Å, with electronic coupling integrals as large as 38 meV, and internal reorganization energies as small as 0.133 eV, comparable to or superior to those in fullerenes. ITN-C9 and ITzN-C9 have broad solar-relevant optical absorption, and, when blended with PBDB-TF, afford devices with power conversion efficiencies near 10%. Performance differences between ITN-C9 and ITzN-C9 are understandable in terms of molecular and electronic structure distinctions via the influences on molecular packing and orientation with respect to the electrode.

译文

新型有机半导体对于开发廉价,高效,可溶液处理的聚合物太阳能电池 (psc) 至关重要。PSC光活性层通常通过薄膜浇铸供体聚合物和富勒烯受体共混物来制造,随后进行溶剂蒸发和相分离,从而为光生空穴和电子形成离散的导管。直到最近,n型富勒烯受体仍在PSC文献中占主导地位; 然而,基于茚并二噻吩 (IDTT) 的受体最近启用了显着的PSC性能指标,原因并不完全明显。我们报告了两种基于IDTT的异构受体3,9-双 (2-亚甲基-(3-(1,1-二氰基亚甲基)-苯并-(5,6) 茚满酮))-5,5,11,11-四 (4-壬基苯基)-二噻吩并 [2,3-d:2 ',3'-d']-s-吲哚 [1,2-b:5,6-b'] 二噻吩 (ITN-C9) 和3,9-双 (2-亚甲基-(3-(1,1-二氰基亚甲基)-苯并 (6,7) 吲哚酮))-5,5,11,11-四 (4-壬基苯基)-二噻吩并 [2,3-d:2 ',3'-d']-s-吲哚并 [1,2-b:5,6-b'] 二噻吩 (ITzN-C9) 揭示了相对于富勒烯的特殊IDTT特性。纯净的受体和与氟聚合物供体聚 {[4,8-双 [5-(2-乙基己基)-4-氟-2-噻吩基] 苯并 [1,2-b:4,5-b'] 二噻吩e2,6-二基]-alt-[2,5-噻吩二基 [5,7-双 (2-乙基己基)-4,8-二氧代氧4h,8h-苯并 [1,2-c:4,5-c']dithiophene-1,3-二基]} (PBDB-TF) 通过光学光谱学,循环伏安法,热重分析,差示扫描量热法,单晶x射线衍射,光伏响应,空间电荷限制电流传输,原子力显微镜、掠入射广角x射线散射和密度泛函理论水平的量子化学分析。数据揭示了ITN-C9和ITzN-C9组织,使得最低的未占据的富含分子轨道的端基具有接近3.31(1) Å 的分子间 π-π 距离,电子耦合积分大到38 meV,内部重组能量小到0.133 eV,与富勒烯相当或优于富勒烯。ITN-C9和ITzN-C9具有广泛的太阳能相关光吸收,当与PBDB-TF混合时,提供功率转换效率接近10% 的器件。ITN-C9和ITzN-C9之间的性能差异通过对分子堆积和相对于电极的取向的影响而在分子和电子结构区别方面是可以理解的。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录