Talaromyces emersonii, a thermophilic aerobic fungus, produces a complete xylan-degrading enzyme system when grown on appropriate substrates. In this paper we present the physicochemical and catalytic properties of three enzymes, xylosidase (Xyl) I (M(r) 181,000; pI 8.9), II (M(r) 131,000; pI 5.3) and III (M(r) 54,200; pI 4.2). Xyl I and II appear to be dimeric and Xyl III is a single-subunit protein. All three enzymes catalyse the hydrolysis of aryl beta-D-xylosides and xylo-oligosaccharides. Xyl I is a classic beta-xylosidase (1,4-beta-D-xylan xylohydrolase; EC 3.2.1.37), and Xyl II and III are novel xylanases (endo-1,4-beta-D-xylan xylanohydrolase; EC 3.2.1.8) which we believe have not hitherto been reported. In addition to the above substrates, they also catalyse the extensive hydrolysis of unsubstituted xylans, and may have considerable biotechnological potential. The hydrolysis product profiles and bond-cleavage frequencies with various substrates are presented.