We have used combinatorial chemistry with amino acid mixtures (X) at positions 6 to 23 in vasoactive intestinal peptide (VIP) to optimize binding affinity and selectivity to the rat VPAC(1) receptor. The most efficient amino acid replacement was a substitution of alanine at position 18 to diphenylalanine (Dip), increasing the displacement efficiency of (125)I-VIP by 370-fold. The [Dip(18)]VIP(6-23) was subsequently used to find a second replacement, employing the same approach. Tyrosine at position 9 was selected and the resulting [Tyr(9),Dip(18)]VIP(6-23) analog has a K(i) value of 90 nM. This analog was unable to stimulate cAMP production at 10(-6) M but was able to inhibit VIP-induced cAMP stimulation (K(b) = 79 nM). The K(i) values of [Tyr(9),Dip(18)]VIP(6-23) using the rat VPAC(2) and PAC(1) receptors were 3,000 nM and >10,000 nM, respectively. Thus, [Tyr(9),Dip(18)]VIP(6-23) is a selective VPAC(1) receptor antagonist. The C-terminally extended form, [Tyr(9),Dip(18)]VIP(6-28), displays improved antagonistic properties having a K(i) and K(b) values of 18 nM and 16 nM, respectively. On the contrary, the fully extended form, [Tyr(9),Dip(18)]VIP(1-28), was a potent agonist with improved binding affinity (K(i) = 0.11 nM) and ability to stimulate cAMP (EC(50) = 0.23 nM) compared with VIP (K(i) = 1.7 nM, EC(50) = 1.12 nM). Furthermore, the specificity of this agonist to the VPAC(1) receptor was high, the K(i) values for the VPAC(2) and PAC(1) receptors were 53 nM and 3,100 nM, respectively. Seven other analogs with the [Tyr(9),Dip(18)] replacement combined with previously published VIP modifications have been synthesized and described in this work.