The prevalence of overweight-obesity has increased sharply among undergraduates worldwide. In 2016, approximately 52% of adults were overweight-obese. This cross-sectional study aimed to investigate the prevalence of overweight-obesity and explore in depth the connection between eating habits and overweight-obesity among Chinese undergraduates.The study population included 536 undergraduates recruited in Shijiazhuang, China, in 2017. They were administered questionnaires for assessing demographic and daily lifestyle characteristics, including sex, region, eating speed, number of meals per day, and sweetmeat habit. Anthropometric status was assessed by calculating the body mass index (BMI). The determinants of overweight-obesity were investigated by the Pearson χ test, Spearman rho test, multivariable linear regression, univariate/multivariate logistic regression, and receiver operating characteristic curve analysis.The prevalence of undergraduate overweight-obesity was 13.6%. Sex [male vs female, odds ratio (OR): 1.903; 95% confidence interval (95% CI): 1.147-3.156], region (urban vs rural, OR: 1.953; 95% CI: 1.178-3.240), number of meals per day (3 vs 2, OR: 0.290; 95% CI: 0.137-0.612), and sweetmeat habit (every day vs never, OR: 4.167; 95% CI: 1.090-15.933) were significantly associated with overweight-obesity. Eating very fast was positively associated with overweight-obesity and showed the highest OR (vs very slow/slow, OR: 5.486; 95% CI: 1.622-18.553). However, the results of multivariate logistic regression analysis indicated that only higher eating speed is a significant independent risk factor for overweight/obesity (OR: 17.392; 95% CI, 1.614-187.363; P = .019).Scoremeng = 1.402 × scoresex + 1.269 × scoreregion + 19.004 × scoreeatin speed + 2.546 × scorenumber of meals per day + 1.626 × scoresweetmeat habit and BMI = 0.253 × Scoremeng + 18.592. These 2 formulas can help estimate the weight status of undergraduates and predict whether they will be overweight or obese.

译文

全球大学生超重肥胖的患病率急剧上升。2016年,大约52% 的成年人超重肥胖。这项横断面研究旨在调查中国大学生超重肥胖的患病率,并深入探讨饮食习惯与超重肥胖之间的联系。研究人群包括2017年在中国石家庄招募的536名大学生。他们接受了问卷调查,以评估人口和日常生活方式的特征,包括性别,地区,饮食速度,每天进餐次数和甜食习惯。通过计算体重指数 (BMI) 来评估人体测量状态。采用Pearson χ 检验、Spearman rho检验、多变量线性回归、单变量/多变量logistic回归和受试者工作特征曲线分析对超重肥胖的影响因素进行调查,得出大学生超重肥胖的患病率为13.6%。性别 [男性与女性,优势比 (OR): 1.903; 95% 置信区间 (95% CI): 1.147-3.156],地区 (城市与农村,OR: 1.953; 95% CI: 1.178-3.240),每天用餐次数 (3 vs 2,OR: 0.290; 95% CI: 0.137-0.612) 和甜食习惯 (每天vs从不,OR: 4.167; 95% CI: 1.090-15.933) 与超重肥胖显着相关。进食非常快与超重肥胖呈正相关,并且显示出最高的OR (vs非常慢/慢,OR: 5.486; 95% CI: 1.622-18.553)。然而,多因素logistic回归分析结果表明,只有较高的进食速度是超重/肥胖的显著独立危险因素 (OR: 17.392; 95% CI,1.614-187.363; P   =  .019).Scoremeng   =   1.402  ×  scoresex + 1.269  ×  scorereeregion + 19.004  ×  scoreeatin speed + 2.546  ×  scoreng每天进餐次数 + 1.626 ×× scorscoresweetmeat习惯和bmi   =   0.253 ×× scorscoremeng + 18.592。这2个公式可以帮助估计大学生的体重状况,并预测他们是否会超重或肥胖。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录