BACKGROUND:Gene delivery to target cells is crucially important to establish gene therapy and regenerative medicine. Although various virus-based and synthetic molecule-based gene vectors have been developed to date, selective transfection in a site or a cell level is still challenging. For this study, both light-responsive and temperature-responsive synthetic gene vectors were designed for spatiotemporal control of a transfection system. METHODS:11-Mercaptoundecanoic acid-coated gold nanorods were mixed with polyamidoamine dendron-bearing lipids of two types having amino-terminus or ethoxydiethylene glycol-terminus to obtain hybrid vectors. Hybrid vectors were mixed further with pDNA. Then we investigated their physicochemical properties and transfection efficacy with or without near infrared laser irradiation. RESULTS:Hybrid vectors formed complexes with pDNA and exhibited enhanced photothermal property under near infrared laser irradiation compared with parent gold nanorods. Transfection efficacy of complexes was promoted considerably by brief laser irradiation soon after complex application to the cells. Analysis of intracellular distribution revealed that laser irradiation promoted the adsorption of complexes to the cells and cytosolic release of pDNA, which is derived from the change in surface hydrophobicity of complexes through dehydration of temperature-responsive groups. CONCLUSIONS:Hybrid vector is promising as a light-activatable transfection system.

译文

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录