The Hall-Petch relationship, according to which the strength of a metal increases as the grain size decreases, has been reported to break down at a critical grain size of around 10 to 15 nanometres1,2. As the grain size decreases beyond this point, the dominant mechanism of deformation switches from a dislocation-mediated process to grain boundary sliding, leading to material softening. In one previous approach, stabilization of grain boundaries through relaxation and molybdenum segregation was used to prevent this softening effect in nickel-molybdenum alloys with grain sizes below 10 nanometres3. Here we track in situ the yield stress and deformation texturing of pure nickel samples of various average grain sizes using a diamond anvil cell coupled with radial X-ray diffraction. Our high-pressure experiments reveal continuous strengthening in samples with grain sizes from 200 nanometres down to 3 nanometres, with the strengthening enhanced (rather than reduced) at grain sizes smaller than 20 nanometres. We achieve a yield strength of approximately 4.2 gigapascals in our 3-nanometre-grain-size samples, ten times stronger than that of a commercial nickel material. A maximum flow stress of 10.2 gigapascals is obtained in nickel of grain size 3 nanometres for the pressure range studied here. We see similar patterns of compression strengthening in gold and palladium samples down to the smallest grain sizes. Simulations and transmission electron microscopy reveal that the high strength observed in nickel of grain size 3 nanometres is caused by the superposition of strengthening mechanisms: both partial and full dislocation hardening plus suppression of grain boundary plasticity. These insights contribute to the ongoing search for ultrastrong metals via materials engineering.

译文

据报道,霍尔-佩奇关系 (根据该关系,金属的强度随着晶粒尺寸的减小而增加) 在临界晶粒尺寸约为10至15纳米1、2时分解。随着晶粒尺寸的减小超过这一点,变形的主要机制从位错介导的过程转换为晶界滑动,从而导致材料软化。在以前的一种方法中,通过松弛和钼偏析来稳定晶界,以防止晶粒尺寸低于10纳米的镍钼合金中的这种软化作用3。在这里,我们使用金刚石砧座电池和径向x射线衍射原位跟踪各种平均晶粒尺寸的纯镍样品的屈服应力和变形纹理。我们的高压实验表明,晶粒尺寸从200纳米降至3纳米的样品持续强化,晶粒尺寸小于20纳米时强化 (而不是减少)。我们在我们的3纳米粒度样品中获得约4.2千兆帕的屈服强度,比商业镍材料强十倍。在此处研究的压力范围内,在晶粒尺寸为3纳米的镍中获得了10.2千兆帕斯卡的最大流动应力。我们在金和钯样品中看到类似的压缩强化模式,直至最小的晶粒尺寸。模拟和透射电子显微镜表明,在晶粒尺寸为3纳米的镍中观察到的高强度是由强化机制的叠加引起的: 部分和全位错硬化以及晶界塑性的抑制。这些见解有助于通过材料工程不断寻找超强金属。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录