The lack of highly efficient, inexpensive catalysts severely hinders large-scale application of electrochemical hydrogen evolution reaction (HER) for producing hydrogen. MoS2 as a low-cost candidate suffers from low catalytic performance. Herein, taking advantage of its tri-layer structure, we report a MoS2 nanofoam catalyst co-confining selenium in surface and cobalt in inner layer, exhibiting an ultra-high large-current-density HER activity surpassing all previously reported heteroatom-doped MoS2. At a large current density of 1000 mA cm-2, a much lower overpotential of 382 mV than that of 671 mV over commercial Pt/C catalyst is achieved and stably maintained for 360 hours without decay. First-principles calculations demonstrate that inner layer-confined cobalt atoms stimulate neighbouring sulfur atoms while surface-confined selenium atoms stabilize the structure, which cooperatively enable the massive generation of both in-plane and edge active sites with optimized hydrogen adsorption activity. This strategy provides a viable route for developing MoS2-based catalysts for industrial HER applications.

译文

:缺乏高效,廉价的催化剂严重阻碍了电化学制氢反应(HER)在生产氢气中的大规模应用。 MoS 2作为低成本的候选物具有较低的催化性能。在这里,我们利用其三层结构,报道了一种MoS2纳米泡沫催化剂,将表面硒和内层钴共聚,表现出超高的大电流密度HER活性,超过了以前报道的所有杂原子掺杂的MoS2。在1000 mA cm-2的大电流密度下,与商用Pt / C催化剂相比,实现了比671 mV更低的382 mV的过电势,并且可以稳定地维持360 for小时而不会衰减。第一性原理计算表明,内层约束的钴原子可激发相邻的硫原子,而表面约束的硒原子可稳定结构,从而可共同产生具有最佳氢吸附活性的面内和边缘活性位。该策略为开发用于工业HER应用的基于MoS2的催化剂提供了一条可行的途径。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录