In order to automate routine fecal examination for parasitic diseases, we propose in this study a computer processing algorithm using digital image processing techniques and an artificial neural network (ANN) classifier. The morphometric characteristics of eggs of human parasites in fecal specimens were extracted from microscopic images through digital image processing. An ANN then identified the parasite species based on those characteristics. We selected four morphometric features based on three morphological characteristics representing shape, shell smoothness, and size. A total of 82 microscopic images containing seven common human helminth eggs were used. The first stage (ANN-1) of the proposed ANN classification system isolated eggs from confusing artifacts. The second stage (ANN-2) classified eggs by species. The performance of ANN was evaluated by the tenfold cross-validation method to obviate the dependency on the selection of training samples. Cross-validation results showed 86.1% average correct classification ratio for ANN-1 and 90.3% for ANN-2 with small variances of 46.0 and 39.0, respectively. The algorithm developed will be an essential part of a completely automated fecal examination system.

译文

为了自动进行寄生虫病的常规粪便检查,我们在本研究中提出了一种使用数字图像处理技术和人工神经网络 (ANN) 分类器的计算机处理算法。通过数字图像处理从显微图像中提取粪便标本中人寄生虫卵的形态特征。然后,ANN根据这些特征确定了寄生虫物种。我们根据代表形状,壳光滑度和大小的三个形态特征选择了四个形态特征。总共使用了82张显微图像,其中包含七个常见的人类蠕虫卵。建议的ANN分类系统的第一阶段 (ANN-1) 将鸡蛋与混淆的人工制品隔离开来。第二阶段 (ANN-2) 按物种分类卵。通过十倍交叉验证方法评估了ANN的性能,以消除对训练样本选择的依赖性。交叉验证结果显示,ANN-1和90.3% 的平均正确分类比分别为46.0和39.0的小方差ANN-2。开发的算法将是全自动粪便检查系统的重要组成部分。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录