Recent studies have shown that balance performance assessment based on artificial intelligence (AI) is feasible. However, balance control is very complex and requires different subsystems to participate, which have not been evaluated individually yet. Furthermore, these studies only classified individual's balance performance across limited grades. Therefore, in this study we attempted to implement AI to precisely evaluate different types of balance control subsystems (BCSes). First, a total of 224 commonly used and newly developed features were extracted from the center of pressure (CoP) data for each participant, respectively. Then, regressors were employed in order to map these features to the evaluation scores given by physical therapists, which include the total score in Mini-Balance-Evaluation-Systems-Tests (Mini-BESTest) and its sub-scores on BCSes, namely anticipatory postural adjustments (APA), reactive postural control (RPC), sensory orientation (SO), and dynamic gait (DG). Their scoring ranges should be 0-28, 0-6, 0-6, 0-6, and 0-10, respectively. The results show that their minimum mean absolute errors from AI estimation reach up to 2.658, 0.827, 0.970, 0.642, and 0.98, respectively. In sum, our study is a preliminary study for assessing BCSes based on AI, which shows its possibility to be used in the clinics in the future.

译文

最近的研究表明,基于人工智能 (AI) 的平衡绩效评估是可行的。但是,平衡控制非常复杂,需要不同的子系统参与,尚未对其进行单独评估。此外,这些研究仅对个人在有限等级中的平衡表现进行了分类。因此,在这项研究中,我们尝试实现AI来精确评估不同类型的平衡控制子系统 (BCSes)。首先,分别从每个参与者的压力中心 (CoP) 数据中提取了总共224个常用和新开发的特征。然后,使用回归变量将这些特征映射到物理治疗师给出的评估分数,其中包括迷你平衡评估系统测试 (Mini-BESTest) 中的总分及其在BCSes上的子分数,即预期姿势调整 (APA),反应姿势控制 (RPC),感觉方向 (SO) 和动态步态 (DG)。他们的得分范围应分别为0-28、0-6和0-10。结果表明,来自AI估计的最小平均绝对误差分别达到2.658、0.827、0.970、0.642和0.98。总而言之,我们的研究是基于AI评估BCSes的初步研究,表明其将来有可能在诊所中使用。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录