Crossing of the pleurovisceral nerve cords in gastropods has supported the view that gastropods evolved by 180 degrees rotation between the ventral and dorsal body regions. Indeed, a rotation of this type occurs as a dramatic morphogenetic movement ("ontogenetic torsion") during the development of basal gastropods. According to a long-standing hypothesis, ontogenetic torsion in basal gastropods preserves an ancient developmental aberration that generated the contorted gastropod body plan. It follows from this reasoning that crossing of the pleurovisceral nerve cords during gastropod development should be mechanically coupled to ontogenetic torsion. The predicted mechanical coupling can now be examined because of the discovery of an early differentiating neuron in Haliotis kamtschatkana (Vetigastropoda) that expresses 5-hydroxytryptamine-like immunoreactivity. The neuron appeared to delineate the trajectory of the pleurovisceral nerve cords beginning before ontogenetic torsion. Before torsion, the neuronal soma is embedded in mantle epithelium at the ventral midline and two neurites extend anteriorly toward the apical sensory organ. Contrary to expectation, the two neurites of this cell did not cross-over during ontogenetic torsion because the soma of this mantle neuron shifted in the same direction as the rotating head and foot. Full crossing of the pleurovisceral nerve cords occurred gradually during later development as the mantle cavity deepened and expanded leftward. These results are consistent with a generalization emerging from comparative studies indicating a conserved developmental stage for gastropods in which the mantle cavity is localized to one side, despite a fully "post-torsional" orientation for other body components. Developmental morphology before this stage is much more variable among different gastropod clades.