RATIONALE AND OBJECTIVES:Our purpose in this study was to investigate the usefulness of follow-up magnification mammograms (i.e., both current and previous magnification mammograms) in a computer-aided diagnosis (CAD) scheme for identifying the histological classification of clustered microcalcifications. MATERIALS AND METHODS:Our database consisted of current and previous magnification mammograms obtained from 93 patients before and after 3-month follow-up: 11 invasive carcinomas, 19 noninvasive carcinomas of the comedo type, 25 noninvasive carcinomas of the noncomedo type, 23 mastopathies, and 15 fibroadenomas. In our CAD scheme, we extracted five objective features of clustered microcalcifications from each of the current and previous magnification mammograms by taking into account image features that experienced radiologists commonly use to identify histological classifications. These features were then merged by a modified Bayes discriminant function for distinguishing among five histological classifications. For the input of the modified Bayes discriminant function, we used five objective features obtained from the previous magnification mammogram (previous features), five objective features obtained from the current magnification mammogram (current features), and the set of the five previous features and the five current features. RESULTS:The classification accuracies with the five current features were higher than those with the five previous features. These classification accuracies were improved substantially by using the set of the five previous features and the five current features. For the set of the five previous features and the five current features, the classification accuracies of our CAD scheme were 81.8% (9 of 11) for invasive carcinoma, 84.2% (16 of 19) for noninvasive carcinoma of the comedo type, 76.0% (19 of 25) for noninvasive carcinoma of the noncomedo type, 73.9% (17 of 23) for mastopathy, and 86.8% (13 of 15) for fibroadenoma. CONCLUSION:Our CAD scheme with use of follow-up magnification mammograms improved classification performance for mammographic clustered microcalcifications.

译文

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录