Many of new chemical discovered in pharmaceutical industry are hydrophobic compounds. Various techniques have been used to overcome solubility problems of hydrophobic drugs in aqueous media. In the meantime, dendrimers have been considered for sustainability, nanoscale size, high carry capacity, tunable terminal functional groups in terms of drug delivery and solubility. In this work, we have synthesized poly(propylene imine) (PPI) dendrimer up to fifth generation using reduction of nitrile groups after Michael addition and also, polyamidoamine (PAMAM) dendrimer up to fourth generation using Michael addition and amidation reactions. fourth and fifth generations of PPI dendrimer and fourth and third generations of PAMAM dendrimer in different concentrations were used to evaluate the solubility of two hydrophobic drugs (tetracycline and dexamethasone). Furthermore, cytotoxicity of dendrimers and dendrimers/drugs hybrids was studied. The results showed that with increasing concentrations and also the generation of dendrimers, the solubility of these two hydrophobic drugs was increased. Cytotoxicity study through MTT assay against Osteoblast-like cell line (MG-63 cells) showed that dendrimers were relatively cytotoxic where adding dexamethasone caused higher cytotoxicity. However, tetracycline showed no significant effect on cytotoxicity whereas prevented cell proliferation.