BACKGROUND:Crossfire cross-linked polyethylene is produced differently from other cross-linked polyethylene materials; a below-melt-temperature annealing process is used with the goal of avoiding compromised mechanical properties. The present study was performed to evaluate retrieved Crossfire acetabular cups to determine whether they had oxidized and to what extent oxidation might have influenced their clinical performance. METHODS:Eleven acetabular cups were received at retrieval and a twelfth acetabular cup was received two years post-retrieval over a period of four years. None were retrieved because of polyethylene wear or fatigue. The cups had been in vivo from 0.1 to 5.3 years. Each was examined visually, clinical fatigue damage was rated, and oxidation was measured with use of Fourier transform infrared spectroscopy. RESULTS:The cups exhibited oxidation that varied with its location on the cup: the oxidation value was generally low on the articular surface but more than an order of magnitude higher value on the rim. Maximum rim oxidation correlated significantly with the time in vivo (Spearman rho = 0.734, p = 0.010). Oxidation was identified visually by a white band in thin sections on the rim of seven of the cups and on the articular surface of one of these seven cups. Six of the seven cups also exhibited clinical fatigue damage. Eight of the twelve cups exhibited evidence of impingement or dislocation. CONCLUSIONS:Acetabular cups made of Crossfire polyethylene oxidized to a measurable degree. The oxidation-related reduction of polyethylene mechanical properties was sufficient to allow the fatigue damage seen in these retrieved cups.

译文

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录