The Hippo signaling pathway controls cellular processes including growth, homeostasis, and apoptosis. The kinase STK3 acts upstream in this pathway to activate LATS1/2 kinase, which phosphorylates and inactivates the transcriptional coactivators YAP/TAZ. The dysregulation of Hippo signaling leads to human diseases including cancer; however, the molecular mechanisms underlying its dysregulation in melanoma are unknown. We aimed to determine the role of the PIN1 in Hippo signaling dysregulation and melanoma tumorigenesis. We report that PIN1 interacts with STK3 and induces ubiquitination-dependent proteasomal degradation of STK3. Furthermore, PIN1 plays a critical role in the nuclear translocation of TAZ, which forms a complex with TEAD to increase CTGF expression. PIN1 ablation blocks TAZ/TEAD complex formation and decreases CTGF expression. PIN1-mediated STK3 degradation is associated with enhanced cell growth, induction of cell transformation, and increased tumorigenicity. In clinical context, PIN1 and STK3 levels are inversely correlated in patient melanoma tissues. These findings indicate that PIN1-mediated STK3 destabilization contributes to the dysregulation of Hippo signaling, leading to oncogenic signaling and melanoma tumorigenesis. Our data suggest that inhibition of the PIN1-STK3 axis could be a novel treatment strategy for malignant melanoma.