Cancer is caused by a variety of pathways, involving numerous types of enzymes. Among them three enzymes i.e. Cyclin-dependent kinase-2 (CDK-2), Human topoisomerase IIα, and Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) are three of the most common enzymes that are involved in the cancer development. Although many chemical drugs are already available in the market for cancer treatment, plant sources are known to contain a wide variety of agents that are proved to possess potential anticancer activity. In this experiment, total thirty phytochemicals were analyzed against the mentioned three enzymes using different tools of bioinformatics and in silico biology like molecular docking study, drug likeness property experiment, ADME/T test, PASS prediction, and P450 site of metabolism prediction as well as DFT calculation to determine the three best ligands among them that have the capability to inhibit the mentioned enzymes. From the experiment, Epigallocatechin gallate was found to be the best ligand to inhibit CDK-2, Daidzein showed the best inhibitory activities towards the Human topoisomerase IIα, and Quercetin was predicted to be the best agent against VEGFR-2. They were also predicted to be quite safe and effective agents to treat cancer. However, more in vivo and in vitro analyses are required to finally confirm their safety and efficacy in this regard.