The stoichiometric limit to the biomass yield (maximal assimilation of the carbon source) is determined by the amount of CO2 lost in anabolism and the amount of carbon source required for generation of NADPH. This stoichiometric limit may be reached when yeasts utilize formate as an additional energy source. Factors affecting the biomass yield on single substrates are discussed under the following headings: Energy requirement for biomass formation (YATP). YATP depends strongly on the nature of the carbon source. Cell composition. The macroscopic composition of the biomass, and in particular the protein content, has a considerable effect on the ATP requirement for biomass formation. Hence, determination of for instance the protein content of biomass is relevant in studies on bioenergetics. Transport of the carbon source. Active (i.e. energy-requiring) transport, which occurs for a number of sugars and polyols, may contribute significantly to the calculated theoretical ATP requirement for biomass formation. P/O-ratio. The efficiency of mitochondrial energy generation has a strong effect on the cell yield. The P/O-ratio is determined to a major extent by the number of proton-translocating sites in the mitochondrial respiratory chain. Maintenance and environmental factors. Factors such as osmotic stress, heavy metals, oxygen and carbon dioxide pressures, temperature and pH affect the yield of yeasts. Various mechanisms may be involved, often affecting the maintenance energy requirement. Metabolites such as ethanol and weak acids. Ethanol increases the permeability of the plasma membrane, whereas weak acids can act as proton conductors. Energy content of the growth substrate. It has often been attempted in the literature to predict the biomass yield by correlating the energy content of the carbon source (represented by the degree of reduction) to the biomass yield or the percentage assimilation of the carbon source. An analysis of biomass yields of Candida utilis on a large number of carbon sources indicates that the biomass yield is mainly determined by the biochemical pathways leading to biomass formation, rather than by the energy content of the substrate.

译文

生物量产量的化学计量极限 (碳源的最大同化) 取决于合成代谢中损失的CO2量和产生NADPH所需的碳源量。当酵母利用甲酸作为附加能源时,可能会达到该化学计量极限。在以下标题下讨论了影响单基质生物量产量的因素: 生物质形成的能量需求 (YATP)。YATP在很大程度上取决于碳源的性质。细胞组成。生物质的宏观组成,特别是蛋白质含量,对生物质形成的ATP需求具有相当大的影响。因此,例如确定生物质的蛋白质含量与生物能学研究有关。碳源的运输。对于许多糖和多元醇发生的主动 (即需要能量的) 运输,可能对计算出的生物质形成的理论ATP需求有很大贡献。市盈率。线粒体能量产生的效率对细胞产量有很大影响。P/O比在很大程度上取决于线粒体呼吸链中质子转移位点的数量。维护和环境因素。渗透胁迫,重金属,氧气和二氧化碳压力,温度和pH等因素影响酵母的产量。可能涉及各种机制,通常会影响维护能量需求。代谢产物如乙醇和弱酸。乙醇增加了质膜的渗透性,而弱酸可以充当质子导体。生长基质的能量含量。文献中经常尝试通过将碳源的能量含量 (由还原程度表示) 与生物质产量或碳源的同化百分比相关联来预测生物质产量。对大量碳源上的假丝酵母的生物量产量的分析表明,生物量产量主要取决于导致生物量形成的生化途径,而不是取决于底物的能量含量。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录