Genetically encoded photosensitizers are increasingly used as optogenetic tools to control cell fate or trigger intracellular processes. A monomeric red fluorescent protein called SuperNova has been recently developed, however, it demonstrates suboptimal characteristics in most phototoxicity-based applications. Here, we applied directed evolution to this protein and identified SuperNova2, a protein with S10R substitution that results in enhanced brightness, chromophore maturation and phototoxicity in bacterial and mammalian cell cultures.