Catalysing the reduction of oxygen in acidic media is a standing challenge. Although activity of platinum, the most active metal, can be substantially improved by alloying, alloy stability remains a concern. Here we report that platinum nanoparticles supported on graphite-rich boron carbide show a 50-100% increase in activity in acidic media and improved cycle stability compared to commercial carbon supported platinum nanoparticles. Transmission electron microscopy and x-ray absorption fine structure analysis confirm similar platinum nanoparticle shapes, sizes, lattice parameters, and cluster packing on both supports, while x-ray photoelectron and absorption spectroscopy demonstrate a change in electronic structure. This shows that purely electronic metal-support interactions can significantly improve oxygen reduction activity without inducing shape, alloying or strain effects and without compromising stability. Optimizing the electronic interaction between the catalyst and support is, therefore, a promising approach for advanced electrocatalysts where optimizing the catalytic nanoparticles themselves is constrained by other concerns.

译文

催化酸性介质中氧的还原是一个长期的挑战。尽管通过合金化可以大大提高铂 (最具活性的金属) 的活性,但合金的稳定性仍然令人担忧。在这里,我们报告,与商业碳负载的铂纳米颗粒相比,负载在富含石墨的碳化硼上的铂纳米颗粒在酸性介质中显示出50-100% 的活性增加和改进的循环稳定性。透射电子显微镜和x射线吸收精细结构分析证实了两种载体上相似的铂纳米颗粒形状,大小,晶格参数和团簇堆积,而x射线光电子和吸收光谱表明电子结构发生了变化。这表明,纯电子金属-载体相互作用可以显着提高氧还原活性,而不会引起形状,合金化或应变效应,并且不会损害稳定性。因此,优化催化剂和载体之间的电子相互作用是先进的电催化剂的一种有前途的方法,其中优化催化纳米颗粒本身受到其他问题的限制。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录