The transcription factor PacC/Rim101 participates in environmental pH adaptation, development and secondary metabolism in many fungi, but whether PacC/Rim101 contributes to fungal adaptation to environmental stress remains unclear. In our previous study, a homologous gene of PacC/Rim101 was identified, and PacC-silenced strains of the agaricomycete Ganoderma lucidum were constructed. In this study, we further investigated the functions of PacC in G. lucidum and found that PacC-silenced strains were hypersensitive to environmental stresses, such as osmotic stress, oxidative stress and cell wall stress, compared with wild-type (WT) and empty-vector control (CK) strains. In addition, transmission electron microscopy images of the cell wall structure showed that the cell walls of the PacC-silenced strains were thinner (by approximately 25-30%) than those of the WT and CK strains. Further analysis of cell wall composition showed that the β-1,3-glucan content in the PacC-silenced strains was only approximately 78-80% of that in the WT strain, and the changes in β-1,3-glucan content were consistent with downregulation of glucan synthase gene expression. The ability of PacC to bind to the promoters of glucan synthase-encoding genes confirms that PacC transcriptionally regulates these genes.