Osteopontin (OPN) is recognized for its significant roles in both physiological and pathological processes. Initially, OPN was recognized as a cytokine with pro-inflammatory actions. More recently, OPN has emerged as a matricellular protein of the extracellular matrix (ECM). OPN is also known to be a substrate for proteolytic cleavage by several proteases that form an integral part of the ECM. In the adult heart under physiological conditions, basal levels of OPN are expressed. Increased expression of OPN has been correlated with the progression of cardiac remodeling and fibrosis to heart failure and the severity of the condition. The intricate process by which OPN mediates its effects include the coordination of intracellular signals necessary for the differentiation of fibroblasts into myofibroblasts, promoting angiogenesis, wound healing, and tissue regeneration. In this review, we discuss the role of OPN in contributing to the development of cardiac fibrosis and its suitability as a therapeutic target.