In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations.

译文

:在北太平洋地区基本上没有过度捕捞的地区,气候制度转变-低频气候变异模式的突然变化-被视为十年尺度生态变异的主要驱动因素。我们评估了主要的气候变化模式的能力[太平洋年代际振荡(PDO),北太平洋涡旋振荡(NPGO),北极涛动(AO),太平洋北美模式(PNA),北太平洋指数(NPI),厄尔尼诺(ElNiño) -南方涛动(ENSO)]解释了北太平洋两个生态系统(阿拉斯加湾和白令海)的十年尺度(1965-2008)气候和生物变异性模式。我们的响应变量是四个区域气候参数的第一主要成分(PC1)[海表温度(SST),海平面压力(SLP),淡水输入,冰盖]和36个生物时间序列中的1-2个PC [生产鲑鱼(Oncorhynchus spp。),底层鱼,鲱鱼(Clupea pallasii),虾和水母的数量或丰度]。我们发现,仅气候模式并不能解释研究区域的生态变异性。仅调用气候模式的线性模型(针对气候PC1)和广义加性模型(针对生物学PC1-2)都产生了具有显着时间趋势的残差,这表明这些模型未能捕捉到生态变异的连贯模式。但是,当将剩余气候趋势和商业捕鱼量的时间序列用作其他候选变量时,生物学PC1-2的所得模型将满足独立残差的假设,并且仅凭气候模式就可预测功率而言,其表现模型将胜于预期。通过效应量和赤池权重的度量,残留的气候趋势是解释生物学PC1变异性的最重要变量,而商业捕获则是生物学PC2的最重要变量。与生物学PC1-2紧密相关的生物分类的气候敏感性和开发历史模式为这些建模结果提出了合理的机理解释。我们的发现表明,即使在没有过度捕捞的情况下,以及在受内部气候变异性强烈影响的地区,也只能在其他生态系统扰动的背景下才能理解气候变化的影响。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录