Sirtuins (SIRTs) are a family of regulatory proteins of genetic information with a high degree of conservation among species. The SIRTs are heavily involved in several physiological functions including control of gene expression, metabolism, and aging. SIRT1 has been the most studied sirtuin and plays important role in the prevention and progression of neurodegenerative diseases acting in different pathways of proteins involved in brain function. SIRT1 activation regulates important genes that also exert neuroprotective actions such as p53, nuclear factor kappa B, peroxisome proliferator-activated receptor-gamma (PPARγ), PPARγ coactivator-1α, liver X receptor, and forkhead box O. It is well established in literature that growing population aging, oxidative stress, inflammation, and genetic factors are important conditions to development of neurodegenerative disorders. However, the exact pathophysiological mechanisms leading to these diseases remain obscure. The sirtuins show strong potential to become valuable predictive and prognostic markers for diseases and as therapeutic targets for the treatment of a variety of neurodegenerative disorders. In this context, the aim of the current review is to present an actual view of the potential role of SIRT1 in modulating the interaction between target genes and neurodegenerative diseases on the brain.