Injectable multiphasic polymer/ceramic composites are attractive as bioresorbable scaffolds for bone regeneration because they can be cross-linked in situ and are osteoconductive. The injectability of the composite depends on the nanoparticle content and the energetic interactions at the polymer/particle interface. The objective of this research was to determine experimentally the rheological properties of the PLEOF/apatite composite as an injectable biomaterial and to compare the viscoelastic response with the predictions of a linear elastic dumbbell model. A degradable in situ cross-linkable terpolymer based on low molecular weight poly(L-lactide) and poly(ethylene oxide) linked by unsaturated fumarate groups is synthesized. The poly(L-lactide-co-ethylene oxide-co-fumarate) (PLEOF) terpolymer interacts with the surface of the apatite nanoparticles by polar interactions and hydrogen bonding. A kinetic model is developed that takes into account the adsorption/desorption of polymer chains to/from the nanoparticle surface. Rheological properties of the aqueous dispersion of PLEOF terpolymer reinforced with nanosized hydroxyapatite (HA) particles are investigated using mechanical rheometry. To this end, we performed a series of rheological experiments on un-cross-linked PLEOF reinforced with different volume fractions of HA nanoparticles. The results demonstrate that the observed nonlinear viscoelasticity at higher shear rates is controlled by the energetic interactions between the polymer chains and dispersed particle aggregates and by the rate of the adsorption/desorption of the chains to/from the surface of the nanoparticles.

译文

可注射多相聚合物/陶瓷复合材料作为骨再生的生物可吸收支架很有吸引力,因为它们可以原位交联并且具有骨传导性。复合材料的可注入性取决于纳米颗粒含量和聚合物/颗粒界面处的高能相互作用。这项研究的目的是通过实验确定褶皱/磷灰石复合材料作为可注射生物材料的流变特性,并将粘弹性响应与线性弹性哑铃模型的预测进行比较。合成了一种基于不饱和富马酸酯基团连接的低分子量聚L-丙交酯和聚环氧乙烷的可降解原位交联三元共聚物。聚 (L-丙交酯-co-环氧乙烷-co-富马酸酯) (PLEOF) 三元共聚物通过极性相互作用和氢键与磷灰石纳米颗粒的表面相互作用。开发了一种动力学模型,该模型考虑了聚合物链在纳米颗粒表面的吸附/解吸。使用机械流变仪研究了用纳米羟基磷灰石 (HA) 颗粒增强的褶皱三元共聚物的水分散体的流变性能。为此,我们对用不同体积分数的HA纳米颗粒增强的未交联的褶皱进行了一系列流变实验。结果表明,在较高的剪切速率下观察到的非线性粘弹性受聚合物链与分散颗粒聚集体之间的能量相互作用以及链到/从纳米颗粒表面的吸附/解吸速率控制。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录