OBJECTIVE:Traditional definition of sample entropy (SampEn), here referred to as global SampEn (GSampEn), provides a conditional entropy estimate that blurs the local statistical properties of the time series. We hypothesized that a local version of SampEn (LSampEn) might be more powerful in the presence of determinism than GSampEn. METHODS:LSampEn was computed by calculating the probability of the current sample conditioned on each reference pattern and averaging it over all reference patterns. The improved ability of LSampEn compared to GSampEn was demonstrated by simulating deterministic periodic, deterministic chaotic, and linear stochastic dynamics corrupted by additive noise and over real cardiovascular variability series recorded from 16 healthy subjects (max-min age range: 22-58 years) during incremental bicycle ergometer exercise. RESULTS:We found that: i) LSampEn is more robust in describing deterministic periodic or nonlinear features in the presence of additive noise than GSampEn, ii) in association with a surrogate approach, LSampEn is more powerful in detecting nonlinear dynamics than GSampEn, iii) LSampEn and GSampEn are equivalent in the presence of stochastic linear dynamics, and iv) only LSampEn can detect the decrease of complexity of heart period variability during bicycle exercise being a likely hallmark of sympathetic activation. CONCLUSION:LSampEn preserves the GSampEn capability in characterizing the complexity of short sequences but improves its reliability in the presence of deterministic patterns featuring sharp state transitions and nonlinear dynamics. SIGNIFICANCE:Variations of complexity can be measured with a greater statistical power over short series using LSampEn, especially when nonlinear features are present.

译文

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录