We investigate the evolution of the network entropy for consensus dynamics in classical and quantum networks. We show that in the classical case, the network differential entropy is monotonically non-increasing if the node initial values are continuous random variables. While for quantum consensus dynamics, the network's von Neumann entropy is in contrast non-decreasing. In light of this inconsistency, we compare several distributed algorithms with random or deterministic coefficients for classical or quantum networks, and show that quantum algorithms with deterministic coefficients are physically related to classical algorithms with random coefficients.

译文

我们研究了经典网络和量子网络中共识动力学的网络熵的演变。我们证明,在经典情况下,如果节点初始值是连续随机变量,则网络微分熵是单调不增加的。而对于量子共识动力学,网络的冯·诺依曼熵却没有减少。鉴于这种不一致,我们比较了经典或量子网络的几种具有随机或确定性系数的分布式算法,并表明具有确定性系数的量子算法与具有随机系数的经典算法在物理上相关。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录