Natural and social multivariate systems are commonly studied through sets of simultaneous and time-spaced measurements of the observables that drive their dynamics, i.e., through sets of time series. Typically, this is done via hypothesis testing: the statistical properties of the empirical time series are tested against those expected under a suitable null hypothesis. This is a very challenging task in complex interacting systems, where statistical stability is often poor due to lack of stationarity and ergodicity. Here, we describe an unsupervised, data-driven framework to perform hypothesis testing in such situations. This consists of a statistical mechanical approach-analogous to the configuration model for networked systems-for ensembles of time series designed to preserve, on average, some of the statistical properties observed on an empirical set of time series. We showcase its possible applications with a case study on financial portfolio selection.

译文

自然和社会多变量系统通常是通过对驱动其动态的可观测物的同时和时间间隔的测量集进行研究的,即通过时间序列集进行研究。通常,这是通过假设检验完成的: 经验时间序列的统计属性与在适当的零假设下预期的统计属性进行检验。在复杂的交互系统中,这是一项非常具有挑战性的任务,由于缺乏平稳性和遍历性,统计稳定性通常很差。在这里,我们描述了一个无监督的数据驱动框架,用于在这种情况下执行假设检验。这包括一种统计机械方法-类似于网络系统的配置模型-用于时间序列的集合,旨在平均保留在经验时间序列集上观察到的某些统计属性。我们通过金融投资组合选择的案例研究来展示其可能的应用。

+1
+2
100研值 100研值 ¥99课程
检索文献一次
下载文献一次

去下载>

成功解锁2个技能,为你点赞

《SCI写作十大必备语法》
解决你的SCI语法难题!

技能熟练度+1

视频课《玩转文献检索》
让你成为检索达人!

恭喜完成新手挑战

手机微信扫一扫,添加好友领取

免费领《Endnote文献管理工具+教程》

微信扫码, 免费领取

手机登录

获取验证码
登录