Food-grade emulsion gels have attracted increasing attention in food and drug manufacturing, owing to their potential as novel delivery systems for lipophilic bioactive ingredients. Emulsion gels are structurally either a polymeric gel matrix with incorporated emulsion droplets (emulsion-filled gels), or a network of aggregated emulsion droplets (emulsion particulate gels). In this study, a novel emulsion gel was prepared by formulating an oil-in-water (O/W) emulsion stabilized by sanxan alone, followed by heating and cooling treatment, resulting in a structured solid system. Stable O/W type sanxan emulsion gels (SEGs) were obtained at sanxan concentration >0.5% (w/w). Fluorescence microscopy results confirmed the adsorption of sanxan on oil droplet surfaces. The effect of temperature and sanxan/oil concentrations on the rheological and textural properties of the SEGs was evaluated: the SEG containing 1% (w/w) sanxan and 20% (w/w) sunflower oil exhibited excellent rheological and textural properties. Further, the addition of 10 mM Na+ or 5 mM Ca2+ greatly enhanced the thermostability of the SEG. The potential of SEGs as sustained-release delivery systems for β-carotene was also explored. The findings are of great interest for the development of novel delivery systems based on emulsion gels stabilized by sanxan for the sustained release of lipophilic components.